Section 5.5: DIVIDING POLYNOMIALS When you are done with your homework you should be able to... - π Use the quotient rule for exponents - π Use the zero-exponent rule for exponents - π Use the quotients-to-power rule - π Divide monomials - π Check polynomial division - π Divide a polynomial by a monomial ### WARM-UP: 1. Find the missing exponent, designated by the question mark, in the final step: $$\frac{x^8}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = x^?$$ 2. Simplify: $$\frac{\left(2a^3\right)^5}{\left(b^4\right)^5}$$ ## THE QUOTIENT RULE FOR EXPONENTS When dividing ______ expressions with the _____ nonzero base, _____ the exponent in the _____ from the _____ in the _____ of the _____ of the ____ base. Example 1: Simplify each expression. a. $$\frac{2^5}{2^3}$$ b. $$\frac{x^{10}}{x^8}$$ # THE ZERO-EXPONENT RULE If _____ is any _____ number other than _____, Example 2: Simplify each expression. a. $$(4^2)^0$$ b. $-7x^0$ ## THE QUOTIENTS-TO-POWERS RULE FOR EXPONENTS If ____ and ___ are real numbers and ___ is nonzero, then When a ____ is ____ to a ____, ____ the _____ to the ____ and ____ by the _____ raised to the _____. Example 3: Simplify each expression. a. $$\left(\frac{x}{3}\right)^5$$ b. $$\left(\frac{4x^3}{5y}\right)^2$$ ### DIVIDING MONOMIALS To ______, ____the _____ and then divide the _____. Use the _____ rule for _____ to divide the _____. Example 4: Divide. a. $$\frac{16x^4}{2x^4}$$ b. $$\frac{6x^2y^5}{21xy^3}$$ c. $$\frac{35r^8}{14r^7}$$ # DIVIDING A POLYNOMIAL THAT IS NOT A MONOMIAL BY A MONOMIAL To ______ by a ______, ____each ____ of the _____ by the _____. Example 5: Find the quotient. a. $$(24x^6 - 12x^4 + 8x^3) \div (4x^3)$$ b. $$\frac{459x^{10}y^9 + 18x^5y^3 - 9x^4y}{-9x^3y}$$