Section 5.5: DIVIDING POLYNOMIALS

When you are done with your homework you should be able to...

- π Use the quotient rule for exponents
- π Use the zero-exponent rule for exponents
- π Use the quotients-to-power rule
- π Divide monomials
- π Check polynomial division
- π Divide a polynomial by a monomial

WARM-UP:

1. Find the missing exponent, designated by the question mark, in the final step:

$$\frac{x^8}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = x^?$$

2. Simplify:

$$\frac{\left(2a^3\right)^5}{\left(b^4\right)^5}$$

THE QUOTIENT RULE FOR EXPONENTS

When dividing ______ expressions with the _____ nonzero base, _____ the exponent in the _____ from the _____ in the _____ of the _____ of the ____ base.

Example 1: Simplify each expression.

a.
$$\frac{2^5}{2^3}$$

b.
$$\frac{x^{10}}{x^8}$$

THE ZERO-EXPONENT RULE

If _____ is any _____ number other than _____,

Example 2: Simplify each expression.

a.
$$(4^2)^0$$

b. $-7x^0$

THE QUOTIENTS-TO-POWERS RULE FOR EXPONENTS

If ____ and ___ are real numbers and ___ is nonzero, then

When a ____ is ____ to a ____, ____

the _____ to the ____ and ____ by the _____ raised to the _____.

Example 3: Simplify each expression.

a.
$$\left(\frac{x}{3}\right)^5$$

b.
$$\left(\frac{4x^3}{5y}\right)^2$$

DIVIDING MONOMIALS

To ______, ____the _____ and then divide the _____.

Use the _____ rule for _____ to divide the _____.

Example 4: Divide.

a.
$$\frac{16x^4}{2x^4}$$

b.
$$\frac{6x^2y^5}{21xy^3}$$

c.
$$\frac{35r^8}{14r^7}$$

DIVIDING A POLYNOMIAL THAT IS NOT A MONOMIAL BY A MONOMIAL

To ______ by a ______, ____each ____ of the _____ by the _____.

Example 5: Find the quotient.

a.
$$(24x^6 - 12x^4 + 8x^3) \div (4x^3)$$

b.
$$\frac{459x^{10}y^9 + 18x^5y^3 - 9x^4y}{-9x^3y}$$